"... acoustics is characterized by its reliance on combinations of physical principles drawn from other sources; and that the primary task of modern physical acoustics is to effect a fusion of the principles normally adhering to other sciences into a coherent basis for understanding, measuring, controlling, and using the whole gamut of vibrational phenomena in any material medium." Origins in Acoustics. F.V. Hunt. Yale University Press, 1978
The main sub-disciplines of acoustics are
.
Table of contents |
2 Measurement methods 3 Reverberation and anechoic rooms 4 Helmholtz Resonator 5 Rectangular Boxes 6 More |
Sound pressure level
The amplitude of a sound wave is most commonly characterized by its pressure. In a normal working environment, a very wide range of sound pressure can occur and so it is the convention that sound pressure is measured on a logarithmic scale using the decibel. If is the rms sound pressure amplitude then the sound pressure level (SPL) is defined as 10 times the logarithm of the square of the ratio of the pressure to some reference pressure.
When speaking of sound levels, one must be sure to differentiate between sound pressure levels and sound power levels. Sound pressure levels are recorded by microphones and other devices. This is a measurement of the amount of pressure in the air being sensed at a given location. It follows that its value can be determined through direct experimentation. In comparison, sound power levels are a measurement of the actual energy being put into use by a given device to create noise. Because of environmental factors, and other influences, the amount of energy a device devotes to creating sound may not be equal to the actual level of the sound as it's perceived. Sound power measurements cannot be directly measured, and must be inferred through other data.
Measurement methods
There are two popular ways for scientists to perform acoustical measurements. They include a "direct method", and a "comparison method". The direct method computes sound power levels by computing an equation of environmental factors (such as room temperature, humidity, reverberation time, etc.) and sound pressure levels. A more precise implementation of this method can be found in the ISO3745 acoustics standard. The comparison method however, is conducted by measuring sound pressure levels from a reference sound source which emits a known, constant, sound power level, and then comparing that level with the sound pressure level of the object being recorded. Each way is equally valid and accurate.
Reverberation and anechoic rooms
Experiments such as the two methods mentioned above are sometimes performed in reverberation rooms, or in some cases, anechoic rooms. The design of a reverberation room is to create long lasting echoeses of sound waves. This helps create a highly averaged and omnidirectional sound level throughout the entire chamber. A typical example of rooms with characteristics similar to reverberation rooms are concrete tunnels, caves, etc. Anechoic rooms, such as hemi-anechoic rooms, or fully anechoic rooms are created to simulate what is called a free field. A free field is the representation of a theoretical infinite plan, in which no sound wave reflections, or echoes, take place. In rooms such as these, the only sounds which exist are being emitted directly from the source, and are not reflected from another part of the chamber. Anechoic rooms have the characteristic of being muted, muffled, and silent.
Helmholtz Resonator
A helmholtz resonator is a container with an open hole or neck.External links
http://physics.kenyon.edu/EarlyApparatus/Rudolf_Koenig_Apparatus/Helmholtz_Resonator/Helmholtz_Resonator.html
More specialized areas of acoustics include, but are not limited to, tonal analysis, sound quality assessments, and noise control.
Subfields and related fields of acoustics: