Arithmetization of analysis
The
arithmetization of analysis was a research program in the
foundations of mathematics carried out in the second half of the 19th century. Its main proponent was
Weierstrass, who argued the geometric foundations of
calculus were not solid enough for rigorous work.
The highlights of this research program are:
An important spinoff of the arithmetization of analysis is
set theory. Naive set theory was created by
Cantor and others after arithmetization was completed as a way to study the singularities of functions appearing in calculus.
The arithmetization of analysis had several important consequences:
- the banishment of infinitesimals from mathematics until the creation of non-standard analysis by Abraham Robinson in the 1960s;
- the shift of the emphasis from geometric to algebraic reasoning: this has had important consequences in the way mathematics is taught today;
- it made the development of modern measure theory by Lebesgue and the rudiments of functional analysis by Hilbert possible;
- it motivated the more extreme philosophical position that all of mathematics should be derivable from logic and set theory, ultimately leading to Hilbert's program, Gödel's theorems and non-standard analysis.
Quotations:
- "God created the integers, all else is the work of man." -- Kronecker