An example is the bifurcation diagram of the logistic map. In this case, the parameter r is show on the x-axis of the plot and the y-axis shows the possible population values of the logistic function.
The bifurcation diagram nicely shows the forking of the possible periods of stable orbits from 1 to 2 to 4 to 8 etc. The ratio of the values of r where bifurcation occurs is called the Feigenbaum constant. The interesting thing about the diagram is that as periods go to infinity while r remains finite. When r is greater than 0.78***, there are no stable orbits and the orbits become chaotic. Hence the bifuraction diagram is a nice example of the importance of chaos theory in even very simple non-linear systems.
Period 3 occurs at 3.83, 5 at 3.74, and so on. Here are the values of c (Mandelbrot set) and r (logistic map) for which 0 and 0.5, respectively, are in stable cycles of the given period:
n | c | r |
---|---|---|
3 | -1.75487766624669 | 3.83187405528332 |
5 | -1.6254137251233 | 3.73891491297069 |
7 | -1.5748891397523 | 3.70176915353796 |
9 | -1.55528270076858 | 3.68721618093415 |
11 | -1.54790376180395 | 3.68171867413713 |
13 | -1.54520178169266 | 3.67970280568025 |
15 | -1.54422856011953 | 3.6789763419034 |
17 | -1.54388090052771 | 3.67871678273588 |
19 | -1.54375717344627 | 3.67862440326842 |
21 | -1.54371321190794 | 3.67859157910118 |
23 | -1.54369760241228 | 3.67857992407341 |
25 | -1.54369206143762 | 3.67857578682226 |
27 | -1.54369009474707 | 3.67857431836197 |
29 | -1.54368939672815 | 3.67857379717502 |
31 | -1.54368914899106 | 3.67857361219815 |
33 | -1.54368906106612 | 3.67857354654758 |
35 | -1.54368902986056 | 3.67857352324744 |
37 | -1.54368901878536 | 3.67857351497797 |
39 | -1.54368901485465 | 3.67857351204304 |
41 | -1.5436890134596 | 3.6785735110014 |
43 | -1.54368901296448 | 3.67857351063172 |
45 | -1.54368901278875 | 3.67857351050051 |
47 | -1.54368901272639 | 3.67857351045394 |
49 | -1.54368901270425 | 3.67857351043742 |
51 | -1.5436890126964 | 3.67857351043155 |
53 | -1.54368901269361 | 3.67857351042947 |
55 | -1.54368901269262 | 3.67857351042873 |
57 | -1.54368901269227 | 3.67857351042847 |
59 | -1.54368901269215 | 3.67857351042837 |
61 | -1.5436890126921 | 3.67857351042834 |
63 | -1.54368901269208 | 3.67857351042833 |
65 | -1.54368901269208 | 3.67857351042832 |
67 | -1.54368901269208 | 3.67857351042832 |
69 | -1.54368901269208 | 3.67857351042832 |
71 | -1.54368901269208 | 3.67857351042832 |
6 | -1.47601464272843 | 3.62755752951552 |
10 | -1.44700884060748 | 3.60538583753537 |
14 | -1.43641156477138 | 3.59723819837256 |
18 | -1.43249708877703 | 3.59422210982563 |
22 | -1.43109654904286 | 3.59314214731307 |
26 | -1.4306095831777 | 3.5927665403408 |
30 | -1.43044302383688 | 3.59263805714325 |
34 | -1.43038649845399 | 3.59259445224585 |
38 | -1.4303673801139 | 3.5925797037807 |
42 | -1.43036092273569 | 3.59257472234509 |
46 | -1.43035874289521 | 3.59257304074174 |
50 | -1.43035800719415 | 3.59257247319657 |
54 | -1.43035775891334 | 3.59257228166417 |
58 | -1.43035767512727 | 3.59257221702869 |
62 | -1.43035764685272 | 3.59257219521673 |
66 | -1.4303576373112 | 3.59257218785607 |
70 | -1.43035763409132 | 3.59257218537214 |
74 | -1.43035763300474 | 3.59257218453392 |
78 | -1.43035763263807 | 3.59257218425105 |
82 | -1.43035763251433 | 3.5925721841556 |
86 | -1.43035763247258 | 3.59257218412339 |
90 | -1.43035763245848 | 3.59257218411252 |
94 | -1.43035763245373 | 3.59257218410885 |
98 | -1.43035763245212 | 3.59257218410761 |
102 | -1.43035763245158 | 3.59257218410719 |
106 | -1.4303576324514 | 3.59257218410705 |
110 | -1.43035763245134 | 3.592572184107 |
114 | -1.43035763245132 | 3.59257218410699 |
118 | -1.43035763245131 | 3.59257218410698 |
122 | -1.43035763245131 | 3.59257218410698 |
126 | -1.43035763245131 | 3.59257218410698 |
130 | -1.43035763245131 | 3.59257218410698 |
12 | -1.41697773125021 | 3.58222983582036 |
20 | -1.41094075752239 | 3.57754981136923 |
28 | -1.40870040682787 | 3.57581086792324 |
36 | -1.40786584608059 | 3.57516278792669 |
44 | -1.40756521961828 | 3.5749292958202 |
52 | -1.40746003476332 | 3.57484759530604 |
60 | -1.40742384014022 | 3.57481948115997 |
68 | -1.40741148396746 | 3.57480988344185 |
76 | -1.40740728031309 | 3.57480661822444 |
84 | -1.40740585222534 | 3.57480550894652 |
92 | -1.40740536734078 | 3.57480513230868 |
100 | -1.4074052027419 | 3.57480500445521 |
108 | -1.40740514687184 | 3.5748049610577 |
116 | -1.40740512790837 | 3.57480494632768 |
124 | -1.40740512147185 | 3.57480494132806 |
132 | -1.4074051192872 | 3.57480493963112 |
140 | -1.40740511854569 | 3.57480493905515 |
148 | -1.40740511829402 | 3.57480493885965 |
156 | -1.40740511820859 | 3.5748049387933 |
164 | -1.4074051181796 | 3.57480493877078 |
172 | -1.40740511816976 | 3.57480493876314 |
180 | -1.40740511816642 | 3.57480493876054 |
188 | -1.40740511816528 | 3.57480493875966 |
196 | -1.4074051181649 | 3.57480493875936 |
204 | -1.40740511816477 | 3.57480493875926 |
212 | -1.40740511816472 | 3.57480493875923 |
220 | -1.40740511816471 | 3.57480493875921 |
228 | -1.4074051181647 | 3.57480493875921 |
236 | -1.4074051181647 | 3.57480493875921 |
244 | -1.4074051181647 | 3.57480493875921 |
4096 | -1.40115517044441 | 3.56994565735885 |
2048 | -1.40115510202246 | 3.56994560411108 |
1024 | -1.40115478254662 | 3.56994535548647 |
512 | -1.40115329084992 | 3.56994419460807 |
256 | -1.40114632582695 | 3.56993877423331 |
128 | -1.40111380493978 | 3.56991346542235 |
64 | -1.40096196294484 | 3.56979529374994 |
32 | -1.40025308121478 | 3.56924353163711 |
16 | -1.39694535970456 | 3.56666737985627 |
8 | -1.38154748443206 | 3.55464086276882 |
4 | -1.31070264133683 | 3.4985616993277 |
2 | -1. | 3.23606797749979 |
1 | 0. | 2. |