Main Page | See live article | Alphabetical index

Descriptive set theory

In mathematics, descriptive set theory is the study of certain classes of "well-behaved" setss of real numbers, e.g. Borel sets, analytic sets, and projective sets. A major aim of descriptive set theory is to describe all of the "naturally occuring" sets of real numbers by using various constructions to build a strict hierarchy beginning with the open sets (generated by the open intervals).

More generally, Polish spaces are studied in descriptive set theory, because every Polish space is homeomorphic to a subspace of the Hilbert cube.

Many questions in descriptive set theory ultimately depend upon set-theoretic considerations and the properties of ordinal and cardinal numbers.

References