Diapente
In
harmony,
diapente is the ratio 3:2 between a pair of frequencies or, equivalently, the ratio 2:3 between a pair of wavelengths. It is the
arithmetic mean of
diapason and
unison (considered as frequencies):
It is 1.1 in binary, and it is the sum of the first three reciprocals of triangular numbers:
- .
It is the basis (together with diapason) of the Pythagorean tuning system. It is derived from the number 3. 1:3 is smaller than an octave (1:2): to bring it back to within one octave of unison, it is multiplied by 2:1 (diapason) yielding an equivalent note but an octave lower:
1:3 x 2:1 = 2:3 .
In Pythagorean tuning, 12 diapentes are approximately equal to 7 diapasons:
-
The proportional error in the approximation is called
Pythagorean comma.
The base 2 logarithm of diapente is approximately 7/12;
-
and the error in the approximation is +1.95 cents, which is the Pythagorean comma in cents.
The ratio 12/7 is the sum of the first 6 reciprocals of triangular numbers:
Diapason is equal to 12 semitones, and diapente is equal to 7 semitones. A piano has 7 (and one third) diapasons and 12 (and four sevenths) diapentes. Therefore it is possible to play the
circle of fifths on a piano without wrapping it into a single octave, but rather playing it as a spiral of fifths.
The diapente is also called perfect fifth.
See also: diapason, diatessaron.