Empirical orthogonal functions
- This article is a stub.
A set of
empirical orthogonal functions is a set of basis functions which specify a
transform on a set of empirical
signals, which result in a set of signals that,
phenomenologically speaking, are statistically independant; i.e. have maximum
variance. Thus,
information is evenly distributed amongst the signals, as well as the equally measurable values of each signal, resulting in maximum
information entropy, and robustness to
noise.
When one discusses empirical orthogonal functions, they are concerned with how to extract these functions from a given system, with regard to a given set of information. They are also concerned with, therefore, what the empirical orthogonal functions that pertain to a given thing-in-the-world are, in relation to another given thing-in-the-world.
Related topics: