Table of contents |
2 Regulatory GTPases 3 Heterotrimeric G proteins 4 The Ras GTPase superfamily 5 Translation factor family 6 Translocation factors |
The hydrolysis of the γ phosphate of GTP supposedly occurs by the SN2 mechanism (see nucleophile substitution) via a pentavalent intermediate state depending on Mg2+.
Insert image here
Regulatory GTPases, also called the GTPase superfamily, are GTPases used for regulation of other biochemical processes. Most prominent among the regulatory GTPases are the G proteins.
All regulatory GTPases have a common mechanism that enables them to switch a signal transduction chain on and off. Throwing the switch is performed by the unidirectional change of the GTPase from the active, GTP-bound form to the inactive, GDP-bound form by hydrolysis of the GTP through intrinsic GTPase-activity, effectively switching the GTPase off. This reaction is initiated by GTPase-activating proteins (GAPs), coming from another signal transduction pathway. It can be reverted (switching the GTPase on again) by Guanine nucleotide exchange factors (GEFs), which cause the GDP to dissociate from the GTPase, leading to its association with a new GTP. This closes the cycle to the active state of the GTPase; the irreversible hydrolysis of the GTP to GDP forces the cycle to run only in one direction. Only the active state of the GTPase can transduce a signal to a reaction chain.
The efficiency of the signal transduction via a GTPase depends on the ratio of active to inactive GTPase. That equals
These G proteins are made from three subunits, with the G domain located on the largest one (the α unit); together with the two smaller subunits (β and γ units), they form a tightly associated protein complex. α and γ unit are associated with the membrane by lipid anchors. Heterotrimeric G proteins act as the specific reaction partners of G protein-coupled receptors. The GTPase is normally inactive. Upon receptor activation, the intracellular receptor domain activates the GTPase, which in turn activates other molecules of the signal transduction chain, either via the α unit or the βγ complex. Among the target molecules of the active GTPase are adenylate cyclase and ion channels. The heterotrimeric G proteins can be classified by sequence homology of the α unit into four families:
These are small momomeric proteins homologous to Ras. They are also called as small GTPases. The Ras superfamily is further divided into five subfamily: Ras, Rho, Rab, Arf and Ran.
These GTPases play an important role in initiation, elongation and termination of protein biosynthesis. Fill in more!
See signal recognition particle (SRP). Fill in more!
Mechanism of GTP hydrolysis
Regulatory GTPases
GTP switch
Switch regulation
with kdiss.GDP being the dissociation constant of GDP, and kcat.GTP the hydrolysis constant of GTP for the specific GTPase. Both constants can be modified by special regulatory proteins.
The amount of active GTPase can be changed in several ways :
Heterotrimeric G proteins
By combination of different α, β and γ subunits, a great variety (>1.000) of G proteins can be produced.
Activation cycle of heterotrimeric G proteins
In the basic state, the Gα-GDP-Gβγ complex and the receptor that can activate it are separately associated with the membrane. On receptor activation, the receptor becomes highly affine for the G protein complex. On binding with the complex, GDP dissociates from the complex; the free complex has a high affinity for GTP. Upon GTP binding, both Gα-GTP and Gβγ separate from both the receptor and from each other. Depending on the lifetime of the active state of the receptor, it can activate more G proteins this way.
Both Gα-GTP and Gβγ can now activate separate effector molecules and activate them, thus sending the signal further down the signal reaction chain. Once the intrinsic GTPase activity of the α unit has hydrolyzed the GTP to GDP, the two parts can reassociate to the original, inactive state. The speed of the hydrolysis reaction works as an internal clock for the length of the signal. The Ras GTPase superfamily
Translation factor family
Translocation factors