If we insist that the solutions to the Yang-Mills equations have finite energy, then the curvature of the solution at infinity (taken as a limit) has to be zero. This means that the Chern-Simons invariant can be defined at the 3-space boundary.
This is equivalent, via Stokes' theorem, to taking the integral
Since the integral of a nonnegative integrand is always nonnegative, for all real θ. So, this means If this bound is saturated, then the solution is a BPS state. For such states, either *F=F or *F=-F depending on the sign of the homotopy invariant.