Table of contents |
2 Algebraic structure 3 Cyclotomic polynomials 4 Cyclotomic fields |
For every positive integer n, there are n different n-th roots of unity. For example, the third roots of unity are 1, (−1 +i√3) /2 and (−1 − i√3) /2. In general, the n-th roots of unity can be written as:
Roots of unity in the complex numbers
for j = 0, ..., n − 1 (see pi and exponential function); this is a consequence of Euler's identity. Geometrically, the n-th roots of unity are located on the unit circle in the complex plane, forming the corners of a regular n-gon.
Providing n is at least 2, these numbers add up to 0, a simple fact that is of constant use in mathematics. It can be proved in any number of ways, for example by recognising the sum as coming from a geometric progression.
The nth roots of unity form a group under multiplication of complex numbers. This group is cyclic. A generator of this group is called a primitive n-th root of unity. The primitive n-th roots of unity are precisely the numbers of the form exp(2πij/n) where j and n are coprime. Therefore, there are φ(n) different primitive n-th roots of unity, where φ(n) denotes Euler's phi function.
The n-th roots of unity are precisely the zeros of the polynomial p(X) = Xn − 1; the primitive n-th roots of unity are precisely the zeros of the nth cyclotomic polynomial
Every nth root of unity is a primitive dth root of unity for exactly one positive divisor d of n. This implies that
Algebraic structure
Cyclotomic polynomials
where z1,...,zφ(n) are the primitive n-th roots of unity. The polynomial
Φn(X) has integer coefficients and is irreducible over the rationals (i.e., cannot be written as a product of two positive-degree polynomials with rational coefficients). The case of prime n, which is easier than the general assertion, follows from Eisenstein's criterion.
This formula represents the factorization of the polynomial Xn - 1 into irreducible factors and can also be used to compute the cyclotomic polynomials recursively. The first few are
In general, if p is a prime number, then all pth roots of unity except 1 are primitive pth roots, and we have
By adjoining a primitive nth root of unity to Q, one obtains the nth cyclotomic field Fn. This field contains all nth roots of unity and is the splitting field of the nth cyclotomic polynomial over Q. The field extension Fn/Q has degree φ(n) and its Galois group is naturally isomorphic to the multiplicative group of units of the ring Z/nZ.
As the Galois group of Fn/Q is abelian, this is an abelian extension. Every subfield of a cyclotomic field is an abelian extension of the rationals. In these cases Galois theory can be written out quite explicitly in terms of Gaussian periods: this theory from the Disquisitiones Arithmeticae of Gauss was published many years before Galois.
Conversely, every abelian extension of the rationals is such a subfield of a cyclotomic field - a theorem of Kronecker.Cyclotomic fields