Runge-Kutta methods
The
Runge-Kutta methods are a family of
numerical analysis techniques used for the approximation of solutions of
ordinary differential equations. They were developed around 1900 by the mathematicians C. Runge and M.W. Kutta. The fourth-order formulation ("RK4") is the most commonly used, since it provides substantial accuracy without excessive complexity.
If y' = f(t,y) is a differential equation and its value at some initial time is specified by y(t0) = y0, then the RK4 method is given by the following equation:
where
Thus, the next value (y
n+1) is determined by the present value (y
n) plus the product of the size of the interval (h) and an estimated slope. The slope is a weighted average of slopes:
- k1 is the slope at the beginning of the interval;
- k2 is the slope at the midpoint of the interval, using slope k1 to determine the value of y at the point tn + h/2 using Euler's formula;
- k3 is again the slope at the midpoint, but now using the slope k2 to determine the y-value;
- k4 is the slope at the end of the interval, with its y-value determined using k3.
When the four slopes are averaged, more weight is given to the slopes at the midpoint:
Iterative methods in general may be represented by the generic form y
n+1 = cy
n, where c is a coefficient that depends upon the method used and the equation being evaluated. The primary reason that the RK4 method is successful is that the coefficient c that it produces is almost always a very good approximation to the actual value. Indeed, the RK4 method has a total accumulated error of
O(h
4).