In algebraic topology this idea is made into a formal tool.
Table of contents |
2 Examples 3 Properties 4 See also |
A topological space X is called simply connected if it is path-connected and any continuous map f : S1 -> X (where S1 denotes the unit circle in Euclidean 2-space) can be contracted to a point in the following sense: there exists a continuous map F : D2 -> X (where D2 denotes the unit disk in Euclidean 2-space) such that F restricted to S1 is f.
An equivalent formulation is this: X is simply connected if and only if it is path connected, and whenever p : [0,1] → X and q : [0,1] → X are two paths (i.e.: continuous maps) with the same start and endpoint (p(0) = q(0) and p(1) = q(1)), then p and q are homotopic relative {0,1}. Intuitively, this means that p can be "continuously deformed" to get q while keeping the endpoints fixed. Hence the term simply connected: for any two given points in X, there is one and "essentially" only one path connecting them.
A third way to express the same: X is simply connected if and only if X is path-connected and the fundamental group of X is trivial, i.e. consists only of the identity element.
A surface (two-dimensional topological manifold) is simply connected if and only if it is connected and its genus is 0. Intuitively, the genus is the number of "holes" or "handles" of the surface.
If a space X is not simply connected, one can often rectify this defect by using its universal cover, a simply connected space which maps to X in a particularly nice way.
If X and Y are homotopy equivalent and X is simply connected, then so is Y.
The notion of simply connectedness is important in complex analysis because of the following facts:
Formal definition and equivalent formulations
Examples
Properties
See also