The skew-symmetric n-by-n matrices form a vector space of dimension (n2 - n)/2. This is the tangent space to the orthogonal group O(n). In a sense, then, skew-symmetric matrices can be thought of as "infinitesimal rotations".
In fact, the skew-symmetric n-by-n matrices form a Lie algebra using the commutator Lie bracket
Infinitesimal rotations
and this is the Lie algebra associated to the Lie group O(n).
A matrix G is orthogonal and has determinant 1, i.e., it is a member of that connected component of the orthogonal group in which the identity element lies, precisely if for some skew-symmetric matrix A we have
An alternating form φ on a vector space V over a field K is defined (if K doesn't have characteristic 2) to be a bilinear form
See also symmetric matrix.