Table of contents |
2 Finite dimensional case 3 See also |
Functional Analysis
If M is a normal operator, with distinct eigenvalues λ1 , ..., λm, then there exist nxn hermitian idempotent operators P1, ..., Pm such that
Finite dimensional case
In the spectral decomposition of normal matrix M, the rank of the matrix Pj is the dimension of the eigenspace belonging to λ.
A more familiar form of spectral theorem is that any normal matrix can be diagonalized by a unitary matrix. That is, for any normal matrix A, there exists an unitary matrix U such that
The column vectors of U are the eigenvectors of A and they are orthogonal.
It could be viewed as a special case of Schur decomposition.
Real matrices
If A is a real symmetric matrix, then U could be chosen to be an orthogonal matrix and all the eigenvalues of A are real.
See also