Whereas an organism that thermoregulates is one that keeps its temperature constant and adapts to the temperature of the environment, thermoconformer changes its body temperature according to the temperature outside of it’s body.
Table of contents |
2 Types of thermoregulation 3 Physiological temperature regulation in vertebrates 4 Behavioral temperature regulation |
Life on earth exists within a narrow range of temperature which is stabilized by the unique properties of water within the bodies of organisms including animals; enzymes become denatured at temperature extremes and metabolic reactions occur best at certain temperatures; both endotherms, which control the build-up of heat from aerobic respiration (homeotherms) and ectotherms (poikilotherms) can thermoregulate but only the endotherms (birds and mammals) can maintain a stable body temperature by using their nervous, endocrine, respiratory and circulatory systems.
There are two types of thermoregulation that are used by animals:
Even though fishes are ectotherms some have developed the ability to remain functional even when the water temperature is below freezing and some even use natural antifreeze to resist ice crystal formation in their tissues; amphibians (also ectotherms) must cope with the loss of heat through their moist skins by evaporative cooling; reptiles, like amphibians must warm their bodies by behavioral adaptations; the stratum corneum they possess limits heat loss by evaporative cooling.
Main article: Endotherms
Birds avoid overheating by panting since, unlike the mammals, their thin skin has no sweat glands. Down feathers trap warm air acting as excellent insulators (sometimes used by humans). Hair in mammals also acts as a good insulator; mammalian skin is much thicker than that of birds and often has a continuous layer of insulating fat beneath the dermis - in marine mammals like whales this is referred to as blubber.
In cold environments, birds and mammals can compensate for heat loss by:
In addition to human beings, a number of animals also maintain their body temperature by physiological and behavioral adjustments. For example, a desert lizard alters their location continuously during a day. In the morning, some portion of its body, which is head, emerges from its burrow and later the entire body comes out of its hiding place and basks in the sun to aborb solar heat. As the sun gets stronger, a lizard hides under the rock or goer back to the burrows. Interestingly, as the sun goes down and the temperature is cooler, it emerges again.
By changing its behavior, a lizard can keep the body temporature to some degree. However, since a lizard is an ectoderm, she is not able to control the body temperature through metabolic regulation.
Some animals living in cold environment maintain their body temperature, preventing heat loss. They let their fur grow more to increase the insulation. Some arctic animals allow their body extremities to cool to very low temperature. Compared to the core body temperature, their legs or nose are extremely low nearly zero celsius, so they have nothing to lose heat in legs or nose. Because the extremities are not insulated well, high temperature in foot and hooves is hard to maintain.Temperature regulation
Heat gains and losses in animals
Types of thermoregulation
Physiological temperature regulation in vertebrates
Ectotherms
Endotherms
Heat production in birds and mammals
In warm environments, birds and mammals avoid overheating by:
Behavioral temperature regulation