Gold or copper wire can be used, though gold is more common because its oxide is not as problematic in making a weld. If copper wire is used, nitrogen must be used as a cover gas to prevent the copper oxides from forming during the wire bonding process. Copper is also harder than gold, which makes damage to the surface of the microchip more likely. However copper is cheaper than gold and has superior electrical properties, and so remains a compelling choice.
Almost all modern ball bonding processes use a combination of heat, pressure, and ultrasonic energy to make a weld at each end of the wire. The wire used can be as small as 15µm in diameter - such that several welds could fit across the width of a human hair.
A person that first witnesses a ball bonder usually compares it's operation to that of a sewing machine. In fact there is a needle-like disposable tool called the capillary, through which the wire is fed. A high-voltage electric charge is applied to the wire. This melts the wire at the tip of the capillary. The tip of the wire forms into a ball because of the surface tension of the molten metal.
The ball quickly solidifies, and the capillary is lowered to the surface of the microchip, which has typically been heated to at least 125°C. The machine then pushes down on the capillary and applies ultrasonic energy with an attached transducer. The combined heat, pressure, and ultrasonic energy create a weld between the copper or gold ball and the surface of the microchip - which is usually copper or aluminum. This is the so-called ball bond that gives the process its name.
Next the wire is payed out through the capillary and the machine moves over a few millimeters to the location that the microchip needs to be wired up to (usually called the substrate). The machine again descends to the surface, this time without making a ball so that the wire is crushed between the substrate and the tip of the capillary. This time the surface is usually gold, palladium, or silver - but the weld is made in the same way. The resulting weld is quite different in appearance from the ball bond, and is referred to as the wedge bond, tail bond, or simply as the second bond.
In the final step the machine pays out a small length of wire and tears the wire from the surface using a set of clamps. This leaves a small tail of wire hanging from the end of the capillary. The cycle then starts again with the high-voltage electric charge being applied to this tail.
The current state-of-the-art machines (as of 2003) can repeat this cycle about 20 times per second. A modern ball bonder is fully automatic and is essentially a self-sufficient industrial robot, complete with a vision system, sensors, and complex servo systems.