An electric motor converts electricity into mechanical motion.
Most electric motors work by electromagnetism, but motors based on other electromechanical phenomena, such as electrostatic forces and the piezoelectric effect, exist.
Most electromagnetic motors are rotary, but linear types also exist. In a rotary motor, the rotating part (usually on the inside) is called the rotor, and the stationary part is called the stator. The motor contains electromagnets that are wound on a frame called the armature. Kits for making very simple motors are used in many schools. See Westminster motor kits.
One of the first electromagnetic rotary motors, if not the first, was invented by Michael Faraday in 1821, and consisted of a free-hanging wire dipping into a pool of mercury.
A permanent magnet was placed in the middle of the pool.
When a current was passed through the wire, the wire rotated around the magnet, showing that the current gave rise to a circular magnetic field around the wire. This motor is often demonstrated in school physics classes, but brine is sometimes used in place of the toxic mercury.
The classic DC motor has an armature of electromagnets.
A rotary switch called a commutator\ reverses the direction of the electric current twice every cycle, to flow through the armature so that the electromagnets push and pull on permanent magnets on the outside of the motor.
DC motor speed generally depends on a combination of the voltage and current flowing in the motor coils and the motor load or braking torque. The speed is typically controlled by altering the voltage or current flow by using taps in the motor windings or by having a variable voltage supply.
As this type of motor can develop quite high torque at low speed it is often used in traction applications such as locomotives.
The most common single-phase motor is the shaded-pole synchronous motor, which is most commonly used in devices requiring lower torque such as
electric fans, microwave ovens and other small household appliances.
Another common single-phase AC motor is the induction motor, commonly used in major appliances such as washing machines and clothes dryers. These motors can generally provide greater starting torque by using a special startup winding in conjunction with a starting capacitor and a centrifugal switch. When starting, the capacitor and special winding are temporarily connected to the power source and provide starting torque. Once the motor reaches speed, the centrifugal switch disconnects the capacitor and startup winding.
For higher-power applications the three phase (or polyphase) AC induction motor is used. This uses the phase differences between the three phases of the polyphase electrical supply to create a rotating electromagnetic field in the motor. Often, the rotor consists of a number of copper conductors embedded in steel.
Through electromagnetic induction the rotating magnetic field induces current to flow in these conductors, which in turn sets up a counterbalancing magnetic field and this causes the motor to turn in the direction the field is rotating.
This type of motor is known as an induction motor.
In order for it to operate it must always run slower than the frequency of the power supply feeding it causes the magnetic field in the motor to rotate, otherwise no counterbalancing field is produced in the rotor.
If the rotor coils are fed a separate field current to create a continuous magnetic field, one has a synchronous motor, because the motor will rotate in synchronism with the rotating magnetic field produced by the 3 phase AC power.
Synchronous motors can also be used as generators.
AC motor speed primarily depends on the frequency of the AC supply and the amount of slip, or difference in rotation between the rotor and stator fields, determines the torque that the motor produces.
The speed in this type of motor has traditionally been altered by having additional sets of coils or poles in the motor that can be switched on and of to change the speed of magnetic field rotation.
However, developments in power electronics mean that the frequency of the power supply can also now be varied to provide a smoother control of the motor speed.
Another kind of electric motor is the stepper motor, where an internal rotor containing permanent magnets is controlled by a set of external magnets that are switched electronically.
A stepper motor is a cross between a DC electric motor and a solenoid.
Simple stepper motors "cog" to a limited number of positions, but proportionally controlled stepper motors can rotate extremely smoothly. Computer controlled stepper motors are one of the most versatile forms of positioning systems, particularly when part of a digital servo-controlled system.
A linear motor is essentially an electric motor that has been "unrolled" so that instead of producing a torque (rotation), it produces a linear force along its length by setting up a travelling electromagnetic field.
Linear motors are most commonly induction motors or stepper motors.
DC motors
Single-Phase AC motors
AC Induction motors
AC motors generally come in two flavors: single phase and three phase.Stepper motors
Linear motors
See also