| |||||||||||||||||||||||||||||||
General | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Name, Symbol, Number | Lutetium, Lu, 71 | ||||||||||||||||||||||||||||||
Chemical series | Transition metals | ||||||||||||||||||||||||||||||
Group, Period, Block | 3, 6 , d | ||||||||||||||||||||||||||||||
Density, Hardness | 9841 kg/m3, __ | ||||||||||||||||||||||||||||||
Appearance | Silvery white | ||||||||||||||||||||||||||||||
Atomic properties | |||||||||||||||||||||||||||||||
Atomic weight | 174.967 amu | ||||||||||||||||||||||||||||||
Atomic radius (calc.) | 175 (217) pm | ||||||||||||||||||||||||||||||
Covalent radius | 160 pm | ||||||||||||||||||||||||||||||
van der Waals radius | no data | ||||||||||||||||||||||||||||||
Electron configuration | [Xe]44f14 5d1 6s2 | ||||||||||||||||||||||||||||||
e- 's per energy level | 2, 8, 18, 32, 9, 2 | ||||||||||||||||||||||||||||||
Oxidation states (Oxide) | 3 (weak base) | ||||||||||||||||||||||||||||||
Crystal structure | hexagonal | ||||||||||||||||||||||||||||||
Physical properties | |||||||||||||||||||||||||||||||
State of matter | solid (__) | ||||||||||||||||||||||||||||||
Melting point | 1925 K (3006 °F) | ||||||||||||||||||||||||||||||
Boiling point | 3675 K (6156 °F) | ||||||||||||||||||||||||||||||
Molar volume | 17.78 ×1010-3 m3/mol | ||||||||||||||||||||||||||||||
Heat of vaporization | 355.9 kJ/mol | ||||||||||||||||||||||||||||||
Heat of fusion | 18.6 kJ/mol | ||||||||||||||||||||||||||||||
Vapor pressure | 2460 Pa at 1936 K | ||||||||||||||||||||||||||||||
Velocity of sound | no data | ||||||||||||||||||||||||||||||
Miscellaneous | |||||||||||||||||||||||||||||||
Electronegativity | 1.27 (Pauling scale) | ||||||||||||||||||||||||||||||
Specific heat capacity | 150 J/(kg*K) | ||||||||||||||||||||||||||||||
Electrical conductivity | 1.85 106/m ohm | ||||||||||||||||||||||||||||||
Thermal conductivity | 16.4 W/(m*K) | ||||||||||||||||||||||||||||||
1st ionization potential | 523.5 kJ/mol | ||||||||||||||||||||||||||||||
2nd ionization potential | 1340 kJ/mol | ||||||||||||||||||||||||||||||
3rd ionization potential | 2022.3 kJ/mol | ||||||||||||||||||||||||||||||
4th ionization potential | 4370 kJ/mol | ||||||||||||||||||||||||||||||
5th ionization potential | 6445 kJ/mol | ||||||||||||||||||||||||||||||
Most stable isotopes | |||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
SI units & STP are used except where noted. |
Table of contents |
2 History 3 Occurrence 4 Isotopes 5 Compounds 6 Precautions 7 References 8 External links |
Lutetium is a silvery white corrosion-resistant trivalent metal that is relatively stable in air and is the heaviest and hardest of the rare earth elements.
This element is very expensive to obtain in useful quantities and therefore it has very few commercial uses. However, stable lutetium can be used as catalysts in petroleum cracking in refineries and can also be used in alkylation, hydrogenation, and polymerization applications.
Lutetium (Latin Lutetia meaning Paris) was independently discovered in 1907 by French scientist Georges Urbain and Austrian mineralogist Baron Carol Auer von Welsbach. Both men found lutetium as an impurity in the mineral ytterbia which was thought by Swiss chemist Jean Charles Galissard de Marignac (and most others) to consist entirely of the element ytterbium.
The separation of lutetium from Marignac's ytterbium was first described by Urbain and the naming honor therefore went to him. He chose the names neoytterbium (new ytterbium) and lutecium for the new element but neoytterbium was eventually reverted back to ytterbium and in 1949 the spelling of element 71 was changed to lutetium.
Welsbach proposed the names cassiopium for element 71 (after the constellation Cassiopeia) and albebaranium for for the new name of ytterbium but these naming proposals where rejected (although many German scientists still call element 71 cassiopium).
Found with almost all other rare-earth metals but never by itself, lutetium is very difficult to separate from other elements and is the least abundant of all naturally-occurring elements.
The principal commercially viable ore of lutetium is the mineral monzonite [(Ce, La, etc.)PO4] which contains 0.003% of the element. Pure lutetium metal has only relatively recently been isolated and is very difficult to prepare (thus it is one of the most rare and expensive of the rare earth metals). It is separated from other rare earth elements by ion exchange (reduction of anhydrous LuCl3 or LuF3 by either an alkali metal or alkaline earth metal).
Naturally occurring lutetium is composed of 1 stable isotope Lu-175 (97.41% natural abundance). 33 radioisotopes have been characterized, with the most stable being Lu-176 with a half-life of 3.78 × 1010 years (2.59% natural abundance), Lu-174 with a half-life of 3.31 years, and Lu-173 with a half-life of 1.37 years. All of the remaining radioactive isotopes have half-lifes that are less than 9 days, and the majority of these have half lifes that are less than a half an hour. This element also has 18 meta states, with the most stable being Lum-177 (t½ 160.4 days), Lum-174 (t½ 142 days) and Lum-178 (t½ 23.1 minutes).
The isotopes of lutetium range in atomic weight from 149.973 amu (Lu-150) to 183.961 amu (Lu-184). The primary decay mode before the most abundant stable isotope, Lu-175, is electron capture (with some alpha and positron emission), and the primary mode after is beta emission. The primary decay products before Lu-175 are element 70 (ytterbium) isotopes and the primary products after are element 72 (hafnium) isotopes.
Fluoride: LuF3, Chloride: LuCl3, Bromide: LuBr3, Iodide: LuI3, Oxide: Lu2O3, Sulfide: Lu2S3, Telluride: Lu2Te3, Nitride: LuN
Like other rare-earth metals lutetium is regarded as having a low toxicity rating but it and especially its compounds should be handled with care nonetheless. Metal dust of this element is a fire and explosion hazard. Lutetium plays no biological role in the human body but is thought to help stimulate metabolism.
Notable characteristics and applications
History
Occurrence
Isotopes
Compounds
Precautions
References
External links