| |||||||||||||||||||||||||||||||
General | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Name, Symbol, Number | Germanium, Ge, 32 | ||||||||||||||||||||||||||||||
Series | Metalloids | ||||||||||||||||||||||||||||||
Group, Period, Block | 14 (IVA), 4 , p | ||||||||||||||||||||||||||||||
Density, Hardness | 5323 kg/m3, 6 | ||||||||||||||||||||||||||||||
Appearance | greyish white | ||||||||||||||||||||||||||||||
Atomic Properties | |||||||||||||||||||||||||||||||
Atomic weight | 72.64 amu | ||||||||||||||||||||||||||||||
Atomic radius (calc.) | 125 (125) pm | ||||||||||||||||||||||||||||||
Covalent radius | 122 pm | ||||||||||||||||||||||||||||||
van der Waals radius | no data | ||||||||||||||||||||||||||||||
Electron configuration | [Ar]3d3d10 4s2 4p2 | ||||||||||||||||||||||||||||||
e- 's per energy level | 2, 8, 18, 4 | ||||||||||||||||||||||||||||||
Oxidation states (Oxide) | 4 (amphoteric) | ||||||||||||||||||||||||||||||
Crystal structure | Cubic face centered | ||||||||||||||||||||||||||||||
Physical Properties | |||||||||||||||||||||||||||||||
State of matter | solid | ||||||||||||||||||||||||||||||
Melting point | 1211.4 K (1720.9 °F) | ||||||||||||||||||||||||||||||
Boiling point | 3093 K (5108 °F) | ||||||||||||||||||||||||||||||
Molar volume | 13.63 ×1010-3 m3/mol | ||||||||||||||||||||||||||||||
Heat of vaporization | 330.9 kJ/mol | ||||||||||||||||||||||||||||||
Heat of fusion | 36.94 kJ/mol | ||||||||||||||||||||||||||||||
Vapor pressure | 0.0000746 Pa at 1210 K | ||||||||||||||||||||||||||||||
Speed of sound | 5400 m/s at 293.15 K | ||||||||||||||||||||||||||||||
Miscellaneous | |||||||||||||||||||||||||||||||
Electronegativity | 2.01 (Pauling scale) | ||||||||||||||||||||||||||||||
Specific heat capacity | 320 J/(kg*K) | ||||||||||||||||||||||||||||||
Electrical conductivity | 1.45 ohm | ||||||||||||||||||||||||||||||
Thermal conductivity | 59.9 W/(m*K) | ||||||||||||||||||||||||||||||
1st ionization potential | 762 kJ/mol | ||||||||||||||||||||||||||||||
2nd ionization potential | 1537.5 kJ/mol | ||||||||||||||||||||||||||||||
3rd ionization potential | 3302.1 kJ/mol | ||||||||||||||||||||||||||||||
4th ionization potential | 4411 kJ/mol | ||||||||||||||||||||||||||||||
5th ionization potential | 9020 kJ/mol | ||||||||||||||||||||||||||||||
Most Stable Isotopes | |||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||
SI units & STP are used except where noted. |
Table of contents |
2 History 3 Applications 4 Occurrence 5 External Links |
Notable Characteristics
Germanium is a hard, grayish-white element that has a metallic luster and the same crystal structure as diamond. In addition, it is important to note that germanium is a semiconductor, with electrical properties between those of a metal and an insulator. In its pure state, this metalloid is crystalline, brittle and retains its luster in air at room temperature. Zone-refining techniques have led to the production of crystalline germanium for semiconductors that have an impurity of only one part in 1010.
History
In 1871 germanium (Latin Germania for Germany) was one of the elements that Dmitri Mendeleev predicted to exist as a missing analogue of the silicon group (Mendeleev called it "ekasilicon"). The existence of this element was proven by Clemens Winkler in 1886. This discovery was an important confirmation of Mendeleev's idea of element periodicity.
Property | Ekasilicon | Germanium |
---|---|---|
atomic mass | 72 | 72.59 |
density (g/cm3) | 5.5 | 5.35 |
melting point (°C) | high | 947 |
color | gray | gray |
The development of the germanium transistor opened the door to countless applications of solid-state electronics. From 1950 through the early 1970s, this area provided an increasing market for germanium, but then high purity silicon began replacing germanium in transistors, diodes, and rectifiers. Silicon has superior electrical properties, but requires much higher purity samples—a purity which could not be commercially achieved in the early days. Meanwhile, demand for germanium in fiber optics communication networks, infrared night vision systems, and polymerization catalysts increased dramatically. These end uses represented 85% of worldwide germanium consumption for 2000.
Applications
Unlike most semiconductors, germanium has a small band gap, allowing it to efficiently respond to infrared light. It is therefore used in infrared spectroscopes and other optical equipment which require extremely sensitive infrared detectors. Its oxide's index of refraction and dispersion properties make germanium useful in wide-angle camera lenses and in microscope objective lenses.
Germanium transistors are still used in electric guitar amplifiers by musicians who wish to reproduce the distinctive character of amplifiers from the early Rock and roll era.
The alloy silicon germanide (SiGe) is rapidly becoming an important semiconductor material, for use in high speed integrated circuits. Circuits utilising the properties of Si-SiGe junctions can be much faster than those using silicon alone.
Other uses:
Occurrence
This metal is found in argyrodite (sulfide of germanium and silver); coal; germanite; zinc ores; and other minerals.
Germanium is obtained commercially from zinc ore processing smelter dust and from the combustion by-products of certain coals. A large reserve of this element is therefore in coal sources.
This metaloid can be extracted from other metals by fractional distillation of its volatile tetrachloride. This technique permits the production of ultra-high purity germanium.
In 1997 the cost of germanium was about US 3 per gram. The yearend price for germanium in 2000 was $1,150 per kilogram.